

Hybrid Simulation for Electrically Large Antenna Platforms Jim Creed 2016-04-12

Outline

The problem...

A Range of Solvers...

CST MWS solver choice

Volumetric Mesh

Surface Mesh

Full Wave

Ray Tracing

Time Domain

Frequency Domain

FIT, TLM FEM
Hexahedral Mesh
Conformal (PBA) Curved

Integral Equation

MOM, MLFMM Surface Mesh Curved

Asymptotic Solver

SBR Surface Mesh Curved

...for a Range of Applications

Platform Electrical Size

1. Installed Antenna Scenario

2 GHz blade antenna positioned on aircraft

2 GHz 17.4 x 4.5 x 16.2 m 116 x 30 x 108 λ 375,840 λ³

660 million cells

1. "Brute Force" Simulation

2 GHz blade antenna positioned on aircraft 2 GHz 17.4 x 4.5 x 16.2 m $116 \times 30 \times 108 \lambda$ $375,840 \lambda^3$ 660 million cells Single workstation with 2 Kx80 Total memory: < 100 GB

Broadband calculation time ~ few hours

2. What if the challenge increases?

Hybrid: SMALL → BIG

CST MWS Solver "Coupling"

1. Combination of different solvers.

2. Loop over the same solver.

Antenna Placement Workflow

Antenna choice/synthesis

Of interest:

- Antenna Specifications
 - Operating frequency
 - Farfield
 - ...
- Suitable topologies

Antenna simulation

Of interest:

- Integration with other antennas
- Matching circuit
- Radome

Antenna placement

Of interest:

- Installed farfield
- Coupling with other antennas
- Nearfield calculation

Antenna Placement Workflow

Antenna choice/synthesis

Antenna simulation

Antenna placement

Different tool/solvers available at each stage...

Outline

Introduction to hybrid simulation Selected antenna platform examples Conclusions

Three Installed Antenna Examples

1. UAV

2. Satellite

3. Aircraft

Three Installed Antenna Examples

1. UAV

2. Satellite

3. Aircraft

UAV Possible Scenarios

- a) Antenna placement @ lower frequencies
 - + Simple antenna topologies (easy to build from scratch).
 - + EM problem not electrically large.

- b) Antenna placement @ higher frequencies
 - More complex antenna topologies (more difficult to build from scratch).
 - EM problem electrically large.

a) Lower Frequencies

Brodband Analysis using FIT

b) Higher Frequencies

	Antenna specification	Frequency [GHz]
1	TACAN	1.08
2	GPS	1.575
3	Communication	1.8
4	SATCOM (UHF)	2.3

Antennas from 3rd party -> CAD of the antennas not available!

Solution 1

(extract representative antennas)

Solution 2

Use antenna measured data (i.e from MVG).

Specification Library

- A lot of predefined "Aeronautical" antenna specifications.
- Specifications can be used to look for suitable antenna topologies inside Antenna Magus database.

SATCOM Antenna Topologies

4 Parametric Antenna Models + UAV

1	TACAN	
2	GPS	
3	Communication (1.8 GHz)	
4	SATCOM (UHF)	

Extra requirements:

- Keep geometrical parameters of each single project.
- Place the antennas on predefined (parametric) positions.

System Assembly and Modelling

Setup of Simulation Projects

Brute force approach

Field decomposition approach

Installed Antennas using SAM FSC

Installed antennas on UAV

Surface based meshing

Curved Tri+Quad Meshing

- Quad → Less memory
- Curved → Higher accuracy

Available outputs

Broadband antenna to antenna coupling

GPS (fs3) → SATCOM (fs4)

Installed farfield @ 1.8 GHz

Three Installed Antenna examples

Design Issues ⇒ Simulation Issues

Installed performance

Thermal / Mechanical issues

Construction of Model

3D Layout

Schematic

Reflector Installed Performance

Ku band offset Gregorian reflector (14.6 GHz)

Three Installed Antenna Examples

Example: Airborne SATCOM

Ku-band SATCOM:

linear polarization

Uplink: 14.0 - 14.5 GHz

Downlink: 12.25 - 12.75 GHz

Additional antenna constraints: form factor, mechanical stability, aerodynamics, weight

Earth gravity by NASAUPLUNIversity of lexas Lenter for Space Research. - http://www.jpl.nasa.gov/news/news.cfm?release=2007-147. Licensed under Public Domain via Commons https://commons.wikimedia.org/wiki/File:Earth_gravity.png#/media/File:Earth_gravity.png

Installed Performance of Phased Array

Outline

Introduction to hybrid simulation Selected aerospace examples Conclusions

Advantages of Hybrid Approach

- Decomposition of a big volume into subvolumes :
 - SMALLER (Source) → fine features can be accurately simulated (e.g. details of radiating source)
 - SIMPLIFIED (Platform) → mesh can be relaxed for the full model containing the imported source (e.g. increase time step, speed-up method convergence).
- Simulate source with appropriate mesh and solver.
- Import external (measured) fields.
- No knowledge of antenna structure necessary (IP).

Summary

Hybrid Simulation for Electrically Large Antenna Platforms Jim Creed 2016-04-12

Thank you for your time!
We'd be happy to answer any questions.

